FANDOM


La suma es una operación que se deriva de la operación de contar.

Sum.gif

Ejemplo

Si tenemos 16 lápices y compramos 4 lápices más ¿cuántos lápices tenemos? Una forma de saberlo sería volver a contar todos los lápices, pero si lo hiciéramos muchas veces llegaría un momento en que recordaríamos  el resultado y no sería necesario volver a contar los lápices.  Ya sabríamos que 16 + 4 es igual a 20.

Los términos de la suma se llaman sumandos

Propiedades de la suma

La suma tiene cuatro propiedades. Las propiedades son conmutativa, asosiativa, distributiva y elemento neutro.

Propiedad conmutativa: Cuando se suman dos números, el resultado es el mismo independientemente del orden de los sumandos. Por ejemplo 4+2 = 2+4

Propiedad asociativa: Cuando se suman tres o más números, el resultado es el mismo independientemente del orden en que se suman los sumandos. Por ejemplo (2+3) + 4= 2 + (3+4)

Elemento neutro: La suma de cualquier número y cero es igual al número original. Por ejemplo 5 + 0 =5.

Propiedad distributiva: La suma de dos números multiplicada por un tércer número es igual a la suma de cada sumando multiplicado por el tercer número. Por ejemplo 4 * (6+3) = 4*6 + 4*3

Tabla

Aquí presentamos una tabla del uno hasta el 10 son las más fundamentales y con las que se empieza memorizando hasta alcanzar sumar números  grandes, mayores que los de la tabla.  

Tabla de sumar
Tabla del 1
1 + 0 = 1
1 + 1 = 2
1 + 2 = 3
1 + 3 = 4
1 + 4 = 5
1 + 5 = 6
1 + 6 = 7
1 + 7 = 8
1 + 8 = 9
1 + 9 = 10
1 + 10 = 11
Tabla del 2
2 + 0 = 2
2 + 1 = 3
2 + 2 = 4
2 + 3 = 5
2 + 4 = 6
2 + 5 = 7
2 + 6 = 8
2 + 7 = 9
2 + 8 = 10
2 + 9 = 11
2 + 10 = 12
Tabla del 3
3 + 0 = 3
3 + 1 = 4
3 + 2 = 5
3 + 3 = 6
3 + 4 = 7
3 + 5 = 8
3 + 6 = 9
3 + 7 = 10
3 + 8 = 11
3 + 9 = 12
3 + 10 = 13
Tabla del 4
4 + 0 = 4
4 + 1 = 5
4 + 2 = 6
4 + 3 = 7
4 + 4 = 8
4 + 5 = 9
4 + 6 = 10
4 + 7 = 11
4 + 8 = 12
4 + 9 = 13
4 + 10 = 14
Tabla del 5
5 + 0 = 5
5 + 1 = 6
5 + 2 = 7
5 + 3 = 8
5 + 4 = 9
5 + 5 = 10
5 + 6 = 11
5 + 7 = 12
5 + 8 = 13
5 + 9 = 14
5 + 10 = 15
Tabla del 6
6 + 0 = 6
6 + 1 = 7
6 + 2 = 8
6 + 3 = 9
6 + 4 = 10
6 + 5 = 11
6 + 6 = 12
6 + 7 = 13
6 + 8 = 14
6 + 9 = 15
6 + 10 = 16
Tabla del 7
7 + 0 = 7
7 + 1 = 8
7 + 2 = 9
7 + 3 = 10
7 + 4 = 11
7 + 5 = 12
7 + 6 = 13
7 + 7 = 14
7 + 8 = 15
7 + 9 = 16
7 + 10 = 17
Tabla del 8
8 + 0 = 8
8 + 1 = 9
8 + 2 = 10
8 + 3 = 11
8 + 4 = 12
8 + 5 = 13
8 + 6 = 14
8 + 7 = 15
8 + 8 = 16
8 + 9 = 17
8 + 10 = 18
Tabla del 9
9 + 0 = 9
9 + 1 = 10
9 + 2 = 11
9 + 3 = 12
9 + 4 = 13
9 + 5 = 14
9 + 6 = 15
9 + 7 = 16
9 + 8 = 17
9 + 9 = 18
9 + 10 = 19
Tabla del 10
10 + 0 = 10
10 + 1 = 11
10 + 2 = 12
10 + 3 = 13
10 + 4 = 14
10 + 5 = 15
10 + 6 = 16
10 + 7 = 17
10 + 8 = 18
10 + 9 = 19
10 + 10 = 20

La suma de los 100 primeros números

Cuenta la historia que en el año 1787, cuando Carl Friedrich Gauss tenía apenas 10 años, un alboroto en el aula del colegio provocó que el maestro enojado, pidiera a los alumnos que sumaran todos los números del 1 al 100. Creyendo que el castigo sería tenerlos a todos un buen rato ocupados.

A los pocos minutos, Gauss se levantó del pupitre, y le entregó el resultado de la suma al profesor : 5050. El profesor, asombrado y seguramente creyendo que su alumno había puesto un número arbitrariamente, se dispuso él mismo a hacer la interminable suma. Al cabo de un buen rato, comprobó que, efectivamente, la suma daba como resultado 5050.

¿Como hizo Gauss para resolver la suma en tan pocos minutos?. Si no se tratara de un problema matemático, seguramente creeríamos que el joven niño contaba con algún tipo de poder paranormal. En efecto, el poder más brillante a veces se encuentra en la razón.

Sucede que Gauss hizo lo siguiente:

Como debía sumar los números del 1 al 100; Es decir:

1+2+3+4+5+6+……………..+97+98+99+100.

Observó por un momento la secuancia de números y descubrió que si sumaba el primero con el último, el segundo con el anteúltimo y así sucesivamente obtenía siempre el mismo resultado:

(1+100) = (2+99) = (3+98) = …. = (50+51) = 101

Luego, y como entre el número 1 y el 100 tenía 50 pares de números, solo restaba multiplicar por 50 el resultado obtenido.

50 x 101 = 5050.

Mas tarde, Gauss aplicaría el mismo principio para hallar la suma de la serie geométrica y muchas otras series.

Realizar una suma


   { \color{Blue}
      \left .
         \begin{array}{l}
            3 \to
            \left \{
               \begin{array}{l}
                  { \color{Cyan}  \bigstar }    \\
                  { \color{Green} \clubsuit }   \\
                  { \color{Plum}  \blacklozenge }
               \end{array}
            \right .
            \\
            \\
            2 \to
            \left \{
               \begin{array}{l}
                  { \color{Red}   \blacksquare } \\
                  { \color{Sepia} \spadesuit }
               \end{array}
            \right .
         \end{array}
      \right \}
      \to 5
   }

El procedimiento estándar para efectuar sumas de varios números, llamados "sumandos", es el siguiente:

Los sumandos se colocan en filas sucesivas ordenando las cifras en columnas, empezando por la derecha con la cifra de las unidades(U), a la izquierda las decenas(D), la siguiente las centenas(C), la siguiente los millares(M), etc.

La suma de los números 750 + 1583 + 69 se ordenarían de la siguiente forma:   Se suman en primer lugar las cifras de la columna de las unidades según las tablas elementales, colocando en el resultado la cifra de unidades que resulte; cuando estas unidades sean más de 10 las decenas se acumulan como un sumando más en la fila de acarreo.

En este caso 3 más 9 son 12, el 2 del 12 se pone en la parte inferior y el 1 se pasa como acarreo en la columna siguiente.   En la columna de las decenas, procediendo entonces a la suma de esa columna como si fueran unidades.

Sumamos el 1 del acarreo más 5, 8 y 6 que dan un total de 20, el 0 de 20 se pone en la parte inferior como resultado y el 2 se pasa como acarreo a la columna siguiente.   Se procede de igual forma con la columna de las decenas, acarreo incluido, colocando en la fila de acarreo sobre la columna de las centenas las decenas (de unidades de decenas).

En la columna de las centenas tenemos, el 2 de acarreo, el 7 y el 5 que sumados dan 14, el 4 del 14 se pone en la parte inferior y el 1 se pasa a la siguiente columna como acarreo.   Se procede de igual forma con todas las columnas, añadiendo a la columna última de la izquierda las decenas de la columna anterior en vez de subir a la fila de acarreo.

En la columna de los millares tenemos 1 de acareo más el 1 de sumando que sumados dan 2, que se pone en la parte inferior como resultado, al no haber mas sumandos damos por finalizada la operación.   Normalmente los acarreos o llevadas no se anotan en el papel, sumando directamente el acarreo a los sumandos de la columna siguiente y el aspecto de la realización de la suma sin las anotaciones auxiliares sería el siguiente: 

¡Interferencia de bloqueo de anuncios detectada!


Wikia es un sitio libre de uso que hace dinero de la publicidad. Contamos con una experiencia modificada para los visitantes que utilizan el bloqueo de anuncios

Wikia no es accesible si se han hecho aún más modificaciones. Si se quita el bloqueador de anuncios personalizado, la página cargará como se esperaba.

También en FANDOM

Wiki al azar